Analys av ett förbindarsystem i glasfiberförstärkt polymer för sandwichelement

Detta är en Uppsats för yrkesexamina på grundnivå från Linnéuniversitetet/Institutionen för byggteknik (BY); Linnéuniversitetet/Institutionen för byggteknik (BY)

Sammanfattning: During 2021–2022 a new school was constructed in Älmhult, Sweden, using a precast concrete framework. The sandwich walls for the building were produced by the precast manufacturer Torps Byggelement in Alvesta, Sweden. To connect the concrete layer a kind of sandwich connector made of glass fiber reinforced polymer (GFRP) was used that the manufacturer had no previous experience with. This graduation thesis was conducted to compare this GFRP connector system with a traditional system made of stainless steel. The two systems were designed for an identical reference sandwich wall and the two resulting walls were compared with regards to thermal properties, manufacturing process and costs for the manufacturer. The thermal properties were evaluated by modelling in a finite element analysis program that calculated equivalent thermal transmittance. Manufacturing was compared through an interview with employees at the precast manufacturer. Finally, costs were compared by summarizing the cost of components needed from each connector system. The results of the study showed a decrease of 6,7 percent in thermal transmittance when the GFRP connectors were used instead of stainless steel connectors. The thermal bridging effect of GFRP connectors was negligible. In terms of manufacturing, the GFRP connector that was studied was considered by the manufacturer to be preferable to the other system in some regards and equal in others. The total cost of components was considerably higher with GFRP connectors but increased value because of reduced thermal transmittance, reduced labour costs during manufacturing and possible reduction in isolation waste should be considered. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)