Huntingtin gene profiling, towards allele-specific treatment

Detta är en Master-uppsats från KTH/Skolan för kemi, bioteknologi och hälsa (CBH)

Sammanfattning: Huntington diseases(HD) is a fatal autosomal neurodegenerative genetic disorder, caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene, resulting in a toxic gain-of-function in the mutant huntingtin protein(mHTT). To date, there is no approved treatment to either cure or halt the course of HD. It has been established that wild-type(wt) HTT protein is essential for development and has a critical role for maintaining neuronal health, thus, a preferable approach for treatment is an mHTT specific lowering maintaining the wild type HTT expression. The achievement of an allele specific therapies depends on targetable allele variation, hence in this project, was the allele frequency in the Swedish population investigated and compared with both the total population and the European population selective. The data demonstrated that there is significant differences between populations. Additionally, the gene expression in five human fibroblast from HD patients with CAG repeats varying from 40 up to180, was analyzed as well as the gene variation across tissue , where the human HD brain and two animal brains; a nonhuman primate and a transgenic minipig, was compared. The result demonstrated that there is similarity in the gene expression between the two models and the human brain, where the highest expression was seen in the prefrontal cortex. The results from the gene expression analyze in the cell lines of fibroblast demonstrated that there is difference in expression between CAG repeats. Furthermore could it be seen that there were only two cell lines, HD180 and HD70, that was heterozygous for dACTT, rs362307, and for the SNP, rs7223906, in exon 67. There are various therapeutic approaches in the pipeline for HD as shown in this thesis, and hopefully a treatment for the disease in the not too distant future.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)