Höghusbyggande med korslaminerade träskivor

Detta är en Uppsats för yrkesexamina på avancerad nivå från Luleå tekniska universitet/Industriellt och hållbart byggande

Sammanfattning: Historicly speaking wood is our moste important building material and it’s usage streches far back in time. Todyay it’s low density makes it possible to prefabricate whole wood bodies in factories that are later shiped out to building sites where they can be asembled. To meet the requierments of todays housing market, Lindbäcks Bygg AB has started a project where a 14-stories house is the be developed. To build on the height is a necessity due to rising land prices and the land has to be used mor efficient. A build of this high put a great demand on the constructual soulution in order for the wood body to withstand high columnloads on the lower flear, while it is stable enough to withstand the wind. The purpose of this report is to show you a possible way of constructing a 42 m high 14-stories hos usinga cross laminated timber(CLT). For the calculation a preliminary floor used, that has not been entirely completed. This gives the calcultations and arbitrary soulution that can work for similar buildings with varying floor plans. For this reason utilization of the CLT is a bit lower than what is otherwise wanted for cost optimization. In order to wind stabilize the building two differet methods are beging evaluated. In the first one the stabilazation is acheived by stairwells made of concrete In the other one it’s acheived by using 120 mm thick CLT-panels. In both cases the CLT is supporting the vertikal loads that are acting on each floor. On every fifht floor concrete slabs are placed of which the task is to miminize the load effect on the weaker parts of the body. By using composit theory according to (Blass & Fellmoser, 2004), the CLT-panels are controlled if they are in risk form shear, deformation or compression. The CLT-panel can be concidered as gluam wood, GL28h if it consists of C24 timber, which  this report is based on. Since the CLT panel is concidered as a solid element it experienced a reduced compressive and lifting forces, that it would otherwise if it was mad by a column system. The calculations shows that the CLT is strong enogugh to withstand the compressive and horisontal forces that is acting on them. When the building is stabilized using a concrete stairwell, this leads to and horisontal load that the concrete needs to be strong enough to withstand. The result shows that when concidering static loads, it is possible to construct a 14-stories building wtih a CLT-body that meets the requirements of Eurocode. However, when the building is stabilized with concrete towers it generates a load on against the stairwells. It has not been investigated whether or not the concrete is strong enough to withstand this load.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)