Fretting in Wind Power Pitch Bearings: Micro-Slip Experiments and Bearing Test Rig Design

Detta är en Master-uppsats från KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: Wind power is the fastest-growing form of green energy production in Europe, today accounting for 15% of the total power demand with 100.000 turbines installed. This tremendous development relied on a massive technological undertaking that must be continued, and even accelerated in order to meet the European Commission’s environmental goals for 2050. Currently, more active individual control of the rotor blades, turning the blade into and out of the wind, has proven its ability to reduce structural loads on the blades and other components significantly, therefore paving the road towards strong cost reductions. To allow for such adjustment, the rotor blades are connected to the rotor hub via pitch bearings. However, these new structural load reduction control strategies force the pitch bearings into a much more demanding operation condition. More frequent positioning activity and often in the form of smaller oscillating motions, when compared to traditional pitch control. This leading to an increased risk of wear damage of the pitch bearing that could fully incapacitate the blade control. At which point the safe regulation of the turbine can no longer be guaranteed and catastrophic failure, such as the loss of a rotor blade, is possible. This project pertains to the design a bearing test rig that can be used to test rolling element bearings with contact conditions that emulate those found in pitch bearings. A novel frameless motor-driven concept is proposed. The concept is aimed towards preventing unnecessary damage of non-test bearings and improving the dynamic performance of the test rig for a given motor capacity. One further objective of the project involved using an existing KTH single contact test rig to study the friction behavior of different lubricants when minute reciprocal tangential displacements are imposed.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)