Systemteknisk studie av pumpstyrning på Henriksdals nya reningsverk

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Avdelningen för systemteknik; Uppsala universitet/Avdelningen för systemteknik

Författare: Patrik Blomstrand; Rasmus Jemander; [2017]

Nyckelord: ;

Sammanfattning: The population of Stockholm is increasing and with it the amount of wastewater that needs treatment. To cope with the increase, Henriksdal wastewater treatment plant (WWTP) in Stockholm, Sweden, is currently being expanded into the worlds largest WWTP using membrane bioreactor (MBR) technology. The plant will be controlled to a greater extent by pumps and good control is therefore vital to maintain operational stability and an energy efficient process. To analyse the intricate system of pumps and equalisation in tunnels a dynamic model is required.One reason for expanding Henriksdal WWTP is the decommissioning of Bromma WWTP. Wastewater from Bromma will be diverted to Henriksdal through a large tunnel which can be used for flow equalization. To examine whether flow equalization in the tunnel can even out diurnal variations and extreme rain events, water flow in the tunnel and throughout the WWTP was modelled. Models of the tunnel, pumps and basins were made in the programming language C and then merged with different controllers in Matlab/Simulink. To simulate different scenarios for the year 2040, data for the rainy year of 2012 was increased to match the expected population for 2040.Based on simulations for a scenario with dry weather the possibility for flow equalization could be shown. It required a thought-out control strategy for the control of Bromma pumping station based on flow measurements from several other inflows to the WWTP. The control strategy also proved adequate in handling downpours by increasing the amount of waste water subjected to biological treatment. When simulating snow melt or heavy rain, damming in the Bromma tunnel could help to prevent overflow if no strict boundaries were used for the water level in the tunnel. With a maximum allowed water level of 10 m it was, however, possible to dam the first flush containing high concentrations of pollutants and nutrients.Flow equalization makes it easier to maintain even levels in the basins for the return activated sludge (RAS), which in turn makes it easier to maintain high levels in said basins. Higher levels in the RAS-basins leads to reduced energy consumption. In the event of further development of the model, it is possible to add calculations of energy usage for the pumps, which would facilitate further optimization of controllers and their parameters.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)