Punching shear in concrete flat slabs supported on slender edge steel columns

Detta är en Master-uppsats från KTH/Betongbyggnad; KTH/Betongbyggnad

Sammanfattning: Punching shear is a failure mechanism caused by concentrated loads, creating a crack pattern that resembles a cone shape or piece of pie starting from the top surface of the slab and prolongs downwards. When the total shear force is greater than the shear resistance of the slab, it may eventually lead to punching shear failure. It can be visualized as the column punches through the slab. Punching shear is very brittle and occurs all of a sudden. It is believed that the slab is subjected to hogging moments over the column in both directions, i.e. parallel and perpendicular to the free edge. Non-linear finite element analyses (NLFEA) has been used to study the cracking and failure mechanism for the reinforced slab. It is a slab over the edge support without clamping stiffness, therefore simulating the slab shear mechanism over a slender steel column is carried out in this study. The analyses has been performed using the software ATENA 3D Engineering developed by Červenka Consulting. Since the symmetry has been taken into account over an edge column, only one half of the cross-section has been modeled, with a symmetry line passing vertically through the slab and column. It can be summarized that the failure encountered around the column has a conical shape crack pattern similar to the ones encountered when punching shear occurs. However, it is important to note that this failure is not due to classic punching shear, but instead due to shear cracks developing around the column in both directions, both parallel and perpendicular to the free-edge. Three models (C1, C2, and C3) are studied to evaluate the impact that the length of the lower leg of the c-bar reinforcement has during failure. As mentioned earlier above, the crack propagation during punching shear begins from the upper surface of the slab and prolongs downwards diagonally towards the bottom of the slab and adjacent to the column. However, the crack propagation in the strip perpendicular to the free edge in all three models initiate from the bottom and propagate upwards. It can be concluded that the length reduction of the lower leg of the c-bars as a consequence reduced the shear strength capacity of the slab around the steel-plate. The reason for this is due to a reduction in maximum peak load when the lower leg of the c-bars were reduced. Consequently, this leads to a decrease in shear strength capacity of the slab and an earlier failure, where the inner-span was not able to take additional loads which could have led to greater deflections.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)