A Study of Waterjets : Characterization of waterjet in the water atomization process

Detta är en Kandidat-uppsats från KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: This study was regarding the waterjets in the water atomization process. This is because the understanding of the waterjets is not complete and with a greater understanding the production of metal powder could be improved. The waterjets were going to be categorized according to their wave function, size and distribution of the droplets and the three regimes that Höganäs had divided up the jets into was also analyzed. The three regimes depend on the jets characteristics and the regimes are the transparent, milky and the droplet jet. The purpose was to get a better understanding of the correlation between velocity, temperature, waves, size and distribution of the droplets in a 50 cm long waterjet. The method to enhance the understanding of this project was to first do theoretical solution with the help of fluid dynamics. Weber, Reynolds and Ohnesorge number were calculated and evaluated to get a better understanding of the waterjet. Secondly, experiments were conducted where a waterjet with different nozzles and temperatures was filmed with a highspeed camera and the videos were analyzed with the help of a software package called ImageJ. The results show the correlation between increasing temperature and decreasing droplet size and a less cohesive waterjet core. The conclusion from the study was that with the help of temperature one can help control the droplet size.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)