Diesel from wood biomass : Screening LCA of a proposed KDV-plant in Jämtland, Sweden

Detta är en Master-uppsats från Mittuniversitetet/Avdelningen för ekoteknik och hållbart byggande

Sammanfattning: The KDV-process uses catalytic depolymerisation to convert biomass into diesel oil. The environmental performance of KDV-diesel in a proposed KDV-plant located in the County of Jämtland, Sweden, was assessed using Life Cycle Assessment (LCA) methodology. The functional unit of the study was one litre of KDV-diesel and the environmental impact categories that were considered were Global Warming Potential (GWP), Eutrophication Potential (EP) and Acidification Potential (AP). The acquisition of wood biomass significantly affected the life cycle performance of KDV-diesel production in all three impact categories. When benchmarked against conventional diesel oil, KDV-diesel contributed significantly less to GWP, since there are no fossil carbon dioxide (CO2) emissions from the use phase, but it contributed more to EP and AP due to slightly higher emissions in the production phases. This conclusion holds true for five investigated electricity-supply scenarios for the production of KDV-diesel. Each scenario utilised a different source for electricity production: wind power; hydro power; nuclear power; coal power; and using part of the produced KDV-diesel for on-site electricity production. Another scenario analysis compared an alternative use of the wood biomass and assumed that the same amount of wood biomass was used to generate bio-electricity, instead of being converted into KDV-diesel. The scenario analysis indicated that whether wood biomass should be used for KDV-diesel production or for bio-electricity production depends on the type of electricity that is used throughout the life cycle of KDV-diesel.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)