5G Positioning using Machine Learning

Detta är en Master-uppsats från Linköpings universitet/Reglerteknik

Sammanfattning: Positioning is recognized as an important feature of fifth generation (\abbrFiveG) cellular networks due to the massive number of commercial use cases that would benefit from access to position information. Radio based positioning has always been a challenging task in urban canyons where buildings block and reflect the radio signal, causing multipath propagation and non-line-of-sight (NLOS) signal conditions. One approach to handle NLOS is to use data-driven methods such as machine learning algorithms on beam-based data, where a training data set with positioned measurements are used to train a model that transforms measurements to position estimates.  The work is based on position and radio measurement data from a 5G testbed. The transmission point (TP) in the testbed has an antenna that have beams in both horizontal and vertical layers. The measurements are the beam reference signal received power (BRSRP) from the beams and the direction of departure (DOD) from the set of beams with the highest received signal strength (RSS). For modelling of the relation between measurements and positions, two non-linear models has been considered, these are neural network and random forest models. These non-linear models will be referred to as machine learning algorithms.  The machine learning algorithms are able to position the user equipment (UE) in NLOS regions with a horizontal positioning error of less than 10 meters in 80 percent of the test cases. The results also show that it is essential to combine information from beams from the different vertical antenna layers to be able to perform positioning with high accuracy during NLOS conditions. Further, the tests show that the data must be separated into line-of-sight (LOS) and NLOS data before the training of the machine learning algorithms to achieve good positioning performance under both LOS and NLOS conditions. Therefore, a generalized likelihood ratio test (GLRT) to classify data originating from LOS or NLOS conditions, has been developed. The probability of detection of the algorithms is about 90\% when the probability of false alarm is only 5%.  To boost the position accuracy of from the machine learning algorithms, a Kalman filter have been developed with the output from the machine learning algorithms as input. Results show that this can improve the position accuracy in NLOS scenarios significantly.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)