Extraction and Validation of the FIDEL Field Model Parameters for the Main Dipoles of the LHC

Detta är en Magister-uppsats från Institutionen för fysik, kemi och biologi

Sammanfattning: The Large Hadron Collider (LHC) is presently under construction at CERN. The LHC is a circular accelerator that stores proton beams and accelerates them to a 7 TeV beam energy for high energy physics research. The required bending and focusing/defocusing fields are achieved with superconducting magnets. Such a superconducting magnet-based accelerator can be controlled only when the field errors of production and installation of all magnetic elements are known to the required accuracy. The ideal way to compensate the field errors is to have direct diagnostics on the beam. For the LHC, however, a system solely based on beam feedback may be too demanding. The present baseline for the LHC control system hence requires an accurate forecast of the magnetic field and the multipole field errors to reduce the burden on the beam-based feedback. The field model is the core of this magnetic prediction system, also known as \emph{the Field Description for the LHC} (FIDEL). The model will provide the forecast of the magnetic field at a given time, magnet operating current, magnet ramp rate, magnet temperature, and magnet powering history. The model is based on the identification and physical decomposition of the effects that contribute to the total field in the magnet aperture of the LHC dipoles. This thesis presents the tool that was constructed to ease the detection, identification and finally correction of errors in the raw data from the series measurements of the main dipoles of the LHC. The results after cleaning all measurement data for the over 240 dipoles measured at cold, using this tool, is also presented. Another aspect of the Thesis is the presentation of a procedure devised to extract the model parameters for the main dipole magnets of the LHC by using the cleaned data. The procedure and the model are verified and validated by application to the magnets of the 7-8 sector of the LHC.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)