Active Phase Balancing and Battery Systems for Peak Power Reduction in Residential Real Estate : An Economic Feasibility Study

Detta är en Master-uppsats från KTH/Industriell Management

Sammanfattning: Research has shown that three-phase balancing alone can improve the operation of secondary distribution networks and that the addition of energy storage to the phase balancing power electronics further helps to alleviate the negative effects of phase unbalances. However, less attention has been paid to the economic potential of said technologies and particularly for loadside implementation. It appears that the deployment of phase balancers, with or without energy storage, is indeed hampered by uncertainty related to its economic feasibility, despite both technologies being commercially available. This thesis therefore aims to assess and compare the economic feasibility of the two configurations for peak shaving purposes in the context of residential property loads in Sweden. The assessment was performed using a specially developed deterministic techno-economic model taking into consideration historical load data from three Swedish real estate, cost estimations for a range of alternatives used when sizing the systems, applicable tariffs and fees for electricity and its distribution as well as technical parameters such as the capacities and efficiencies of the involved components. A novel approach was taken by linearly extrapolating the three load profiles into three sets of 91 synthesized load profiles to enable a larger dataset for analysis. The net present values generated for each set were then graphed and analyzed per original real estate. The results showed that both configurations can be economically feasible, but only under certain conditions. A phase balancer alone was found to be feasible for real estate whose peak currents are distinctly unbalanced and exceed 50 A, with the best expected rate of return for profiles exceeding 63 A since they enable a tariff switch. The combined system was found to be even more contingent on the tariff switch and therefore only feasible for peaks above 63 A. A substantial difference in the initial investment further makes the single phase balancer the preferred choice, unless the discount rate is as low as 2 % or less. On this basis, potential investors need to assess the state of unbalance of their loads and perform their own calculation based their load profile, cost of capital and applicable tariffs.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)