Machine Learning Based Prediction and Classification for Uplift Modeling

Detta är en Master-uppsats från KTH/Matematisk statistik; KTH/Matematisk statistik

Sammanfattning: The desire to model the true gain from targeting an individual in marketing purposes has lead to the common use of uplift modeling. Uplift modeling requires the existence of a treatment group as well as a control group and the objective hence becomes estimating the difference between the success probabilities in the two groups. Efficient methods for estimating the probabilities in uplift models are statistical machine learning methods. In this project the different uplift modeling approaches Subtraction of Two Models, Modeling Uplift Directly and the Class Variable Transformation are investigated. The statistical machine learning methods applied are Random Forests and Neural Networks along with the standard method Logistic Regression. The data is collected from a well established retail company and the purpose of the project is thus to investigate which uplift modeling approach and statistical machine learning method that yields in the best performance given the data used in this project. The variable selection step was shown to be a crucial component in the modeling processes as so was the amount of control data in each data set. For the uplift to be successful, the method of choice should be either the Modeling Uplift Directly using Random Forests, or the Class Variable Transformation using Logistic Regression. Neural network - based approaches are sensitive to uneven class distributions and is hence not able to obtain stable models given the data used in this project. Furthermore, the Subtraction of Two Models did not perform well due to the fact that each model tended to focus too much on modeling the class in both data sets separately instead of modeling the difference between the class probabilities. The conclusion is hence to use an approach that models the uplift directly, and also to use a great amount of control data in each data set.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)