Simulated Impact of Land Use Dynamics on Hydrology during a 20-year-period of Beles Basin in Ethiopia

Detta är en Master-uppsats från KTH/Mark- och vattenteknik

Sammanfattning: Land use/cover has shown significant changes during the past three decades in Ethiopia especially in the highlands of the country. That resulted in changes in streamflows and other hydrological processes. The existing land and water resources system of the area is adversely affected due the rapid growth of population, deforestation, surface erosion and sediment transport. The main objective of this study is to evaluate the impact of land use/cover changes in the hydrology of Beles Basin, Ethiopia. The physically based hydrologic model, SWAT, was developed for the Beles basin, Ethiopia by combining geospatial and climatic data. ArcGIS has been used to process geospatial data which includes the Digital Elevation Model (DEM) which has a resolution of 90 m, land use/cover and soil maps. A simple Interpolation technique has been used to fill in the missing precipitation data. The GIS interface version of SWAT (ArcSWAT) has the capability to utilize ArcGIS to facilitate input data preparation and output data generation. Idrisi Andes in cooperation with ArcGIS 9.2 used to generate landuse/cover maps from Landsat data of three different years. Three SWAT models were set up using the three generated land use/cover maps and used to evaluate the land use/cover change and its impacts on the streamflow of study basin. The primary hydrological model was evaluated through sensitivity analysis, model calibration, and model validation for realistic prediction of the different hydrological components in the basin. Out of twenty six flow parameters sixteen parameters were found to be sensitive. But the most sensitive ten parameters were selected and used for model calibration. The model calibration was carried out using observed streamflow data from 01 January 2001 to 31 December 2002 and a validation period from 01 January 2003 to 31 December 2004. The coefficient of determinations (R2) was 0.74 and the Nash-Sutcliffe simulation efficiency (NSE) was 0.62which indicated that the model was able to predict streamflow with reasonable accuracy. However, the hydrograph of the cumulative hydrographs of the calibration and validation periods showed significant discrepancies between the observed and the simulated data of each period.  The average yearly flow volume of the observed streamflow on the cumulative hydrograph of the calibration period has exceeded the simulated streamflow. On the other hand on the cumulative hydrograph of the validation period the average yearly flow volume of the simulated streamflow was higher than the observed streamflow. The simulated result of the streamflow data from different land use/cover maps revealed that the change in the land use/cover classes of the basin throughout the study periods.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)