Jämförelse av beräkningsmetoder för lastspridning i tvärled vid brobaneplattor av betong

Detta är en Uppsats för yrkesexamina på avancerad nivå från KTH/Betongbyggnad

Sammanfattning:

Denna studie har till syfte att undersöka hur lastfördelningen och följaktligen dimen­sionerande tvärkrafter och moment i brobaneplattor av betong skiljer sig åt beroende på val av beräkningsmetod. Jämförelsen sker primärt för tre utvalda hand­beräknings­metoder som jämförts med beräkningar gjorda i ett beräknings­program baserat på finita element­metoder (FEM). I jämförelsen undersöks hur laster sprids i brobaneplattan enligt de olika beräknings­metoderna och vilka resulterande maximala snittkrafter som erhålls. Hur lastfördelningen sker är en komplex fråga och det är därför intressant att se vilka skillnader det blir i resultat utifrån olika beräknings­metoder.

Studien skedde på ett utvalt studieobjekt, en åtta meter bred samverkansbro i Njurunda strax söder om Sundsvall. De trafiklaster som beaktats är lastmodell 1 och lastmodell 2 enligt Eurokod (CEN, 2003).

De beräknings­metoder som jämförts i den här studien är dels en metod för beräkning av tvärgående konsol­moment där kantbalken bidrar mycket till den lastspridande effekten. En annan metod är för beräkning av tvärkraftsfördelning vilken generellt anses mycket gynnsam, alltså ger små tvärkrafter att dimensionera bron utifrån. Den tredje och sista handberäkningsmetoden som studerats är beräkningar av tvärgående moment i fältmitt, med hjälp av influensytediagram. Influensytediagrammen som dessa studier baseras på är fram­tagna av Adolf Pucher (Pucher, 1977) och kallas ibland för Pucherdiagram. Finita element­modeller (FE-modeller) skapades för jämförelse av resultat från hand­beräkningar. Flera olika FE-modeller skapades med varierande detaljnivå, för att kunna se hur modelleringstekniken påverkar resultatet. I alla FE-modeller har bro­bane­plattan modellerats som skalelement eftersom detta är det vanligaste sättet att modellera en bro med FEM. Skillnaderna mellan de olika FE-modellerna är framför allt hur huvudbalkarna modellerats. Även ytterligare en handberäkningsmetod tillämpades för respektive snittkraft för att ge ytterligare en referens. Referensmetoderna valdes för att vara enklare metoder som baseras på andra randvillkor än de primära handberäkningsmetoderna i den här studien.

Resultatet från studien visar att de förenklingar som finns i handberäkningar kan ha signifikant inverkan på resultatet. Ett konstant förhållande mellan handberäkning och FEM, där den ena beräkningsmetoden alltid resulterade i större snittkrafter, kunde inte konstateras rakt igenom studien. För tvärgående konsolmoment gav hand­beräkningen ett större maxmoment samt att en del skillnader kunde avläsas FE-modellerna emellan. Vid beräkning av tvärkraft gav FE-beräkningen ett resultat som var nära på det dubbla av det resultat handberäkningen gav. För Pucherdiagrammen blev resultaten varierade och det fanns ingen tydlig indikation för om handberäkningar ger större eller mindre tvärgående moment än en FE-modell.

Studien resulterade bland annat i ökad kunskap om att förenklingar, vid dimen­sionering av en bro med hjälp av handberäkningar, kan ha stor betydelse för resultatet. Då förenklingar vid handberäkning inte går att välja av användaren finns en fördel med FEM. Fördelen med FEM är då att förenklingar styrs av användaren och det går även att studera vilken effekt en viss förenkling ger. En annan slutsats var att betong är ett material som har ett komplext beteende och i metoder som bygger på empiriska studier kan lättare få med olika effekter som finns i en verklig brobaneplatta av betong.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)