A theoretical study of longitudinal and transverse spin fluctuations in disordered Fe64Ni36 alloys

Detta är en Master-uppsats från Linköpings universitet/Teoretisk Fysik

Sammanfattning: That certain iron and nickel alloys exhibit an anomalously low thermal expansion of a wide temperature range has been observed since late 1800s, and this effect is known as the Invar effect. Since then, many theories have been proposed to explain the phenomenon. While it is generally agreed that the effect is related to magnetism, a full explanation of the effect has yet to be found. One recent theory connected the effect to spin-flips in the iron atoms' magnetic moment and that the probability for a spin-flip to occur depends on the atom's local chemical environment. The aim of this thesis is to perform a theoreticalinvestigation into the magneticenergy landscapes for atomic magnetic moments in different local chemical environments in disordered Fe64Ni36 alloys, and the change in pressure upon populating different parts of the magnetic energy landscape. Constrained calculations are performed to obtain the energy landscapes for both iron and nickel atoms in ferromagnetic Fe64Ni64. The calculated nickel atoms all show one global minimum between 0.64 to 0.72μB. The calculated iron atoms all exhibit two local minima: one where the magnetic moment's direction is the same as the ferromagnetic background's direction and has a size between 2 to 3μB, one where the magnetic moment is flipped and has a reversed direction in regards to the ferromagnetic background with a size between -2.5 to -1.9μB. A weak trend is seen for the energy difference between the two local minima: for iron-atoms with iron-rich local environments the energy difference is smaller than for iron-atoms with nickel-rich local environments. The energy landscapes for a moment rotated with respect to the background show that it is energetically favored to rotate the moment from the spin-up local minimum to the spin-flipped local minimum, rather than shrink in size and then increase in size in the opposite direction. This indicates that the negative local minimum might not be a local minimum, but further calculations are needed to determine if the spin-flipped state is a local minimum or just a saddle point in the complete size-and angle magnetic energy landscape. It is observed that the pressure varies little for different magnetic moment sizes for a nickel atom, but shows a larger variation for different magnetic moment sizes for an iron atom. The pressure difference between the magnetic local minima is about 6-9 kbar, and from thermodynamical simulations a small, nonlinear, decline in pressure with increased temperature is observed.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)