Railway power supply system models for static calculations in a modular design implementation

Detta är en Uppsats för yrkesexamina på avancerad nivå från KTH/Elektriska energisystem

Författare: Ronny Skogberg; [2015]

Nyckelord: ;

Sammanfattning: Several previous theses and reports have shown that voltage variations, and other types of supply changes, can influence the performance and movements of trains. As part of a modular software package for railway focused calculations, the need to take into account for the electrical behavior of the system was needed, to be used for both planning and operational uses. In this thesis, different static models are presented and used for train related power flow calculations. A previous model used for converter stations is also extended to handle different configurations of multiple converters. A special interest in the train type IORE, which is used for iron ore transports along Malmbanan, and the power systems influence to its performance, as available modules, for mechanical calculations, in the software uses the same train type. A part of this project was to examine changes in the power systems performance if the control of the train converters were changed, both during motoring and regenerative braking. A proposed node model, for the static parts of a railway power system, has been used to simplify the building of the power system model and implementation of the simulation environment. From the results it can be concluded that under normal conditions, for the used train schedule, the voltage variation should not restrict the trains traction performance. It can also be seen from the results that a more optimized power factor control with a higher regenerative brake power or generation of reactive power could be used to limit the need for investments in infrastructure or to increase the traffic for a given system layout.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)