Novel materials from lignocellulosic sources- can they replace thermoplastics?

Detta är en Kandidat-uppsats från KTH/Fiber- och polymerteknologi

Sammanfattning: Plastic waste is a severe environmental problem in today's society which has been noticed and discussed during the last couple of years. A constant increase of production over the last decades hasled to a large amount of plastic waste ending up in oceans as microplastics. With harder restrictions of plastic use from the European Parliament, alternative plastics that are bio-based and therefore degradable have increased in demand. The aim of this project was therefore to synthesize alignocellulose-based material which contains the minimum amount of latex, the plastic component, while still satisfying the same requirements as a thermoplastic. The original idea was to create the latex with PISA-RAFT technique however, this was not possible since the needed materials could not be delivered due to COVID-19, therefore radical emulsion polymerization was carried out. Two latexes were synthesized to create composites with wheat-straw, latex A and latex B. Both latexes consisted of 75% of monomer vinyl acetate (VAc) which was the main component but with different weight percentages of monomers methacrylic acid (MAA) and methyl methacrylate (MMA). Latex A consisted of 20 % MAA and 5% MMA and latex B consisted of 20% MMA and 5% MAA. Latex A and latex B were then mixed with wheat straw to create composites. Due to problems withthe wheat-straw composites one additional composite was created to be able to do all of the analyses. This composite was created by using filter paper as biofiber to mix with the two different latexes. Various characterization analyses including FE-SEM, DLS, DSC, FTIR, NMR, TGA and tensile tests were performed on the composites. The NMR and DSC analyses indicated that the actual composition of monomers differs from the theoretical composition and demonstrates that the presence of MAA is hard to detect. This is due to the DSC value for latex A experimental Tg being lower than latex B experimental Tg when latex A consists of more MAA which has a higher detected Tg. During the NMR analysis MAA was also not detected in either latex A nor latex B. The analyses of FTIR contradicts the NMR and DSC analyses hence peaks believed to be from MAA are detected. When comparing the analysis for latex A and B, DLS analysis resulted in latex A having a low PDI and a bigger emulsion sphere size which is preferred when producing composites. The tensile test resulted in latex B achieving the higher values for Young’s modulus and max stress while latex A had a higher value for strain at break. The TGA and DSC analysis however resulted in latex B having a higher Tg and higher thermal stability. The overall analyses indicated that latex B was the most optimal choice for composite production with aslight difference. The analysis of the composites indicated by FE-SEM that the interaction between latex and filter paper were higher than for latex and wheat straw. A total of four wheat-straw composites were created with the weight-ratio of wheat-straw:latex, 50:50 and 75:50 for both latex A and B. Due to not being able to grind the wheat straw to the minimum size needed to create composites only FE-SEM and FTIR analyses of the wheat-straw composites could be made. Because of this no conclusion could be made whether the 75:50 or 50:50 weight ratio was the most optimal.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)