Reliable graph predictions : Conformal prediction for Graph Neural Networks

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: We have seen a rapid increase in the development of deep learning algorithms in recent decades. However, while these algorithms have unlocked new business areas and led to great development in many fields, they are usually limited to Euclidean data. Researchers are increasingly starting to find out that they can better represent the data used in many real-life applications as graphs. Examples include high-risk domains such as finding the side effects when combining medicines using a protein-protein network. In high-risk domains, there is a need for trust and transparency in the results returned by deep learning algorithms. In this work, we explore how we can quantify uncertainty in Graph Neural Network predictions using conventional methods for conformal prediction as well as novel methods exploiting graph connectivity information. We evaluate the methods on both static and dynamic graphs and find that neither of the novel methods offers any clear benefits over the conventional methods. However, we see indications that using the graph connectivity information can lead to more efficient conformal predictors and a lower prediction latency than the conventional methods on large data sets. We propose that future work extend the research on using the connectivity information, specifically the node embeddings, to boost the performance of conformal predictors on graphs.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)