Autonomous Landing of an Unmanned Aerial Vehicle on an Unmanned Ground Vehicle using Model Predictive Control

Detta är en Master-uppsats från Linköpings universitet/Institutionen för systemteknik

Sammanfattning: The research on autonomous vehicles, and more specifically cooperation between autonomous vehicles, has become a prominent research field during the last cou- ple of decades. One example is the combination of an unmanned aerial vehicle (UAV) together with an unmanned ground vehicle (UGV). The benefits of this are that the two vehicles complement each other, where the UAV provides an aerial view and can reach areas where a ground vehicle can not. Furthermore, since the UAV has a limited range, the UGV can then serve as transport and recharge sta- tion for the UAV. This master thesis studies how model predictive control (MPC) can be used to land a UAV on a moving UGV.  A linear MPC is chosen, since previous work using this has shown promising results. The UAV is chosen to be controlled using commands in pitch, roll and climbing rate. The MPC is designed as a decoupled controller, with a separate horizontal and vertical controller. This allows for a spatial constraint to be im- plemented, which constrains the UAV from entering ground level before arriving above the UGV. It also constrains the UAV from potentially hitting protruding ob- jects on the UGV. The horizontal controller uses a simple planner, which guides the UAV to land on the UGV from behind.  The MPC is evaluated using a additive white Gaussian noise (AWGN) sen- sor error model with zero mean. The scenario used is that the UAV starts 50 m from the UGV, and the UGV starts driving in a given direction turning randomly. The MPC lands successfully in 100 % of the simulations for a wide range of tun- ings. The MPC maintains the same landing statistics with a delay in the sensor information of up to 500 ms. The AWGN could be increased while maintaining successful landings, however with significantly more retakes and longer landing times. Lower AWGN variance only slightly improves performance, suggesting that the MPC is quite robust towards high variance in the state estimation.  The MPC is also compared to a PID controller. The MPC has significantly shorter landing times. The PID has a more oscillatory control signal, however, the PID has a lower variance in landing positions, but a slightly less centered mean on the UGV. The overall results show that an MPC can be used to achieve a flexible controller that can be tuned and reformulated to fit the situation, and performs as good or better compared to a PID controller.  The hardware tests show promising results for the implementation of the MPC. The controller is not tuned and no system identification is done specifi- cally for the physical UAV, suggesting that the controller is robust for varying settings. Even though the UAV never lands on the UGV, the visual behavior and control signal plots suggest that it would be able to land. However, these tests are performed using global navigation satellite system state estimation on a sta- tionary UGV, therefore further tests need to be performed in more challenging scenarios. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)