Lejarfjället Garnet(?) Peridotite – Origin and Petrological Characterization of Symplectitic Aggregates in Ultramafic Rocks

Detta är en Kandidat-uppsats från Uppsala universitet/Mineralogi, petrologi och tektonik

Sammanfattning: Ultramafic rocks are abundant in the Earth’s mantle but rare on the surface. Since no in-situ samples from the mantle can be collected, mantle rocks provide knowledge of mechanisms operating in the mantle and large-scale processes that brought them up to the surface. The mantle is considered chemically homogeneous and is dominated by the ultramafic, olivine-dominated rock - peridotite. Peridotites consist of olivine, clinopyroxene, orthopyroxene, and an Al-bearing phase. Increasing PT conditions alter the Al-bearing phase in peridotites, from plagioclase, through spinel to garnet. The Caledonian Orogeny occurred during the Ordovician to the Devonian period after the collision of the paleocontinents Laurentia and Baltica and shaped what is now the Scandinavian Caledonides. During the orogeny, a large scale of orogenic peridotites was tectonically emplaced on the surface. Scandinavian Caledonides are divided into Allochthons and further subdivided into Nappe Complexes. The Seve Nappe Complex (SNC) in the Middle Allochthon is interpreted as a record of Baltica’s outermost margin and exhibits evidence of ultramafic rocks that have gone under high- and ultra-high-grade metamorphism. From a locality in the SNC, near Lejarfjället, Ankarede in Jämtland, samples of an ultramafic rock were collected during field studies. To analyze the minerals’ chemical composition and thereby distinguish the petrographic properties of the rock, the samples were cut into thin sections. This study aims to characterize the aggregates occurring within the Lejarfjället peridotite and establish their possible origins. Thin sections of 30 μm thickness were analyzed in an optical petrographic microscope under plane-polarized light and cross-polarized light. Thin sections of 120 μm were analyzed with electron microprobe analysis. Through analysis, the rock type was identified to be the ultramafic rock peridotite, and more specific dunite, consisting of the mineral olivine, spinel, amphibole, serpentine, chlorite, and orthopyroxene. Further analyses of chemical composition allowed full identification of end members of olivine, orthopyroxene, and spinel. Obtained data indicate that the rock is an orogenic peridotite, and has previously been garnet-bearing, formed at a high pressure of at least 15 kilobars. The remnant of garnet is present as kelyphites, with pressure shadows surrounding the reaction corona and the garnet has been completely replaced with spinel and amphibole which constitutes the groundmass of the aggregates. Visible brittle deformation of the rock indicates that the rock was possibly exposed to seismic activity. The amphibole and chlorite indicate fluid interaction with the rock, pointing to the fact that some sort of metasomatic event has occurred. Serpentine present in the rock indicates hydrothermal reaction at low pressure and temperature conditions while the rock went through exhumation. The rock is interpreted to originate from exhumation in a lithosphere-scale extensional shear zone, similarly to examples described in the literature.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)