Improving Dependability of Space-Cloud Payload Processor by Storage System

Detta är en Master-uppsats från Mälardalens universitet/Akademin för innovation, design och teknik

Sammanfattning: Due to the usage of complicated platforms and current high-performance space computing technology, onboard processing in small satellites is expanding. Space-cloud payload processors with Commercial Off-The-Shelf (COTS) components, that are required to be radiation-tolerant, are used to perform the onboard processing. In this thesis, the research will aim to increase the dependability of a generic space-cloud payload processor through its Solid State Drive (SSD) storage unit. To achieve this, a more dependable NAND-flash-based SSD Redundant Array of Independent Disc (RAID) storage system is designed and tested. The reliability of NAND-flash-based SSDs can suffer wear-outs due to increased Program/Erase (P/E) cycles, making them more prone to radiation effects. These radiation effects are considered non-destructive events in the form of bit errors (both single bit-flip and multiple bit-flips). Therefore, making the storage system more dependable involves increasing its reliability against non-destructive events and developing analytical models that account for the considered dynamic of the SSD RAID. The challenge that comes with achieving the aim of this thesis is twofold. First, to explore different RAID levels such that a combination of RAID levels can be incorporated into one SSD for better reliability than a RAID-1 setup. Hence, in this thesis, a RAID array of several SSDs is not considered. Furthermore, the combinations of RAID levels need to account for mixed-critical data. Second, to demonstrate, via simulation and analytical models, the impact on the reliability of the storage system. A comparison study is also undertaken due to the support that the Fourth Extended (Ext4) file system or Zettabyte File System (ZFS) may give to enhance the storage system, and since little research exists that compares the file systems in some feature categories. The solution is a RAID-5 + 6 storage system that is Error Detection And Correction (EDAC) protected by Hamming codes and Reed Solomon (RS) codes. Low-critical data is stored using RAID-5 whereas high-critical data is stored using RAID-6. The simulation of the storage system proves that low-critical stripes of data achieve single fault tolerance whereas high-critical stripes of data tolerate a maximum of 5-bit burst errors. In parallel, several Continuous Time Markov Chain (CTMC) models are analysed, which show that the proposed solution is indeed highly reliable. The comparison study is carried out in a systematic way, and the findings are established as substantial,i.e., ZFS provides greater storage system support. In summary, the results of creating the storage system and analysing it suggest that incorporating RAID-5 and RAID-6 offers better SSD RAID reliability than RAID-1.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)