Groundwater Movement and PFAS Transportation in the Vreta-Bålsta Esker

Detta är en Master-uppsats från Uppsala universitet/Institutionen för geovetenskaper

Författare: Kevin Pettersson; [2020]

Nyckelord: GMS; MODFLOW; MT3DMS; PFAS; modelling; GMS; MODFLOW; MT3DMS; PFAS; Modellering;

Sammanfattning: Håbo municipality is looking for alternative drinking water sources for its residence city of Bålsta. One possible source is the Vreta-Bålsta esker located northeast of Bålsta, which could be used for artificial infiltration and extraction of groundwater. Located on this esker is an area called Dragets industrial area, in which several objects of potential contamination have been identified. One of these is a Landfill located in the northern part of the industrial area in which the local fire fighting forces has used this area for training exercises. During these exercises they have used aqueous film forming foams (AFFFs) containing Per- and polyfluoroalkyl substances (PFAS). Some PFASs have demonstrated adverse health effects already at low concentrations and no more than 90ng l-1 is recommended in Swedish drinking water. In order to assess the suitability of the esker as a source for drinking water a model of the esker was created inside the program GMS (Groundwater modeling system). In GMS the package MODFLOW was used to create a groundwater flow model, and the package MT3DMS was used for contamination transport of PFAS from the landfill. The finished model showed a groundwater divide located in the central parts of Dragets industrial area, with the water either running south toward Lake Mälaren or north towards Lilla Ullfjärden. In total three different PFAS species were used in the transport model with the abbreviations PFOS, PFPeA and PFBA. The transport model was created as a point source to see the transport behavior of PFAS from the landfill. This showed that all the contamination transport that occurred would transport the PFAS north towards Lilla Ullfjärden. Based on this result this would mean that a use for artificial infiltration and extraction of groundwater in the southern part of the esker would not pose a contamination risk from the landfill.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)