Maximizing the Value of Large-Scale Solar PV Parks through Battery Storage and Ancillary Services : An analysis using multiple-integer linear programming optimization

Detta är en Uppsats för yrkesexamina på avancerad nivå från Uppsala universitet/Byggteknik och byggd miljö

Sammanfattning: Renewable power production is becoming a necessity to improve society and overcome the challenges of climate change. In Sweden, large-scale solar PV power is growing year-on-year and today comprises 1 percent of electricity production. Solar power, however, is an intermittent form of electricity production which, whilst being renewable, contributes to increasing grid instability. For the grid to stay in balance, at grid frequency 50 Hz, electricity must be consumed at the time of production. If there is a surplus of production or a sudden decrease in consumption, the frequency will deviate from the nominal value. When introducing larger quantities of intermittent power production, the power system inertia decreases, and the frequency becomes prone to deviate. To combat this, the Swedish TSO Svenska Kraftnät procures ancillary services which aid the grid when needed. For solar PV power to be able to contribute to these marketplaces, a battery storage solution system (BESS) is utilized. This thesis aimed to investigate the economic feasibility of co-locating a solar photovoltaic (PV) park with a battery energy storage system (BESS) and to determine the optimal size of the BESS. The study utilized a linear optimization model to simulate the operation of a 14 MW solar PV park with different sizes of BESS ranging from 1 MWh to 14 MWh. The analysis considered the revenue generated by providing different services to the electricity grid, such as energy arbitrage and frequency regulation. The results indicate that co-locating a solar PV park with a BESS increases revenue, and the optimal BESS size for a 14 MW solar PV park is between 1 and 8 MWh. Above this range, the revenue recedes due to the limitations of the grid connection, which restricts the BESS from participating in the ancillary service markets. The analysis considers the running costs associated with power discharge to the grid and initial BESS investment. The study did not account for ancillary market bids that are not accepted, which could have a significant impact on the revenue generated. The ongoing trend of lowering battery prices could further boost the economic assessment and increase interest in all battery sizes, resulting in larger battery system installations in general.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)