Energiåtervinning av industriell spillvärme från kylvatten : En miljömässig och ekonomisk analys inom en stålindustri

Detta är en Master-uppsats från Karlstads universitet/Institutionen för ingenjörsvetenskap och fysik (from 2013)

Sammanfattning: Nästan 80 procent av den globala energitillförseln kommer från fossila källor, och behöver drastiskt minska. Industriell spillvärme är en energitillgång som blir allt attraktivare men är ofta lågtempererad, vanligtvis mellan 30°C och 100°C, genom att tillsätta en värmepump och låta värmen gå till fjärrvärmenätet blir ofta återbetalningstiden låg. Uddeholms AB använder idag fjärrvärme och en naturgasbaserad spetsvärme för att möta sitt energibehov. Uddeholm AB har stora mängder lågtempererad spillenergi i form av kylvatten från processtegen Electro slag remelting (ESR) och ljusbågsugnen (LBU) som i nuläget inte utnyttjas. Syftet är därför att skapa ett underlag för rekommendation om hur energi som genereras inom industrin kan utvinnas för att möta energibehovet och för att minska användandet av naturgasbaserad spetsvärme. Genom simuleringsprogrammet Simulink har en dynamisk modell byggts upp för att simulera 6 olika system över ett år med en timmes tidssteg. Systemen består av olika kombinationer av värmepumpar, värmeväxlare och ackumulatortank och använder kylvattenflödet från ESR och LBU. Referenssystemet är systemet som används idag, och det första systemet består av en värmepump som använder ESRs kylvattenflöde på värmepumpens kalla sida för att leverera energi till fjärrvärmereturen (VPESR). Det andra systemet består av en värmeväxlare på ljusbågsugnens kylvatten som återvinner energin från ljusbågsugnens kylvatten till fjärrvärmereturen (VVX). Det tredje systemet är en kombination av de två första systemen (VVX + VPESR). I det fjärde systemet tillsätts en extra värmepump efter värmeväxlaren på det tredje systemet (VVX + VPLBU + VPESR). Det femte systemet innebär en värmepump på ljusbågsugnens kylvatten och en värmepump på ESRs kylvatten (VPLBU + VPESR). Det sjätte systemet är samma som det femte men med undantaget att en ackumulatortank tillsätts på ljusbågsugnens kylvatten innan det går in i värmepumpen (VPLBU + Ack + VPESR). Studiens resultat visar att behovet av den naturgasbaserade spetsvärmen försvinner för samtliga fall och miljöpåverkan är lägre än vid referensfallet för samtliga system eftersom den naturgasbaserade spetsvärmen inte längre behöver användas. Vilken miljöpåverkan systemen har beror till stor del på vilken indata som används, och behöver därför tas i beaktning. Ekonomiskt så är samtliga system lönsamma över 20 år med en återbetalningstid på under 5 år. I framtiden bör möjligheten till att sälja energi som produceras till fjärrvärmeföretaget för att maximera lönsamheten ytterligare. Resultaten följer trenden att fler och större värmepumpar resulterar i en högre elförbrukning, lägre fjärrvärmebehov och högre miljöpåverkan. En ackumulatortank bidrar till ett jämnare COP och ett högre årsmedel COP men anses vara en mindre fördelaktig investering eftersom den inte genererar tillräckligt höga resultat för att täcka sin höga initiala kostnad. Det är av största grad viktigt att höja temperaturen på ljusbågsugnens kylvatten eftersom en höjd temperatur minskar energibehovet med ungefär 20%, och miljöpåverkan i form av koldioxidalstring sänks då med ungefär 20%. Systemet uppnår även ungefär 90% större lönsamhet med ökade temperaturer och ett år kortare återbetalningstid utan ackumulatortank och 5 år kortare med ackumulatortank. Det fjärde systemet (VVX + VPLBU + VPESR) har lägst energibehov på ungefär 2 000MWh och uppnår störst lönsamhet över 20 år på nästan 400 Mkr. System två (VVX) har lägst miljöpåverkan i form av koldioxidalstring med en minskning på ungefär 90% jämfört med referenssystemet och kortast återbetalningstid på under 2 år. Därav rekommenderas det andra systemet (VVX) om miljö och återbetalningstid prioriteras och det fjärde systemet (VVX + VPLBU + VPESR) om lönsamhet och ett minskat energibehov prioriteras.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)