Use of Polyvinyl chloride (PVC) as an aggregate for concrete

Detta är en Master-uppsats från Högskolan i Borås/Akademin för textil, teknik och ekonomi

Sammanfattning: This study investigates the use of polyvinyl chloride (PVC) as a partial substitute of natural aggregates in concrete as fine and coarse aggregates. Concrete was prepared by replacing natural aggregates with equal volume of grinded PVC, with volume replacement ratio as 10%, 50% for fine and then 10% and 50% for coarse aggregates. Experiments were performed to investigate the wet density, workability (measured by slump test), compressive strength, elastic modulus, and water absorption of concrete. After checking the particle distribution (sieve analysis), wet density, workability, and compressive strength, since compressive strength of coarse PVC concrete was much less than that of the reference concrete it was decided to continue the investigation using only the fine partial replacements. The results showed that the wet density of concrete gradually decreased with the increase of PVC content, and workability increased with the increase of PVC. Compressive strength decreased by 13 to 20% for fine PVC and 25 to 31% for coarse PVC concrete, as PVC content increased. Also, it was realized that with the increase of PVC content, elastic modulus decreased by 8.7% for 10% fine PVC while 30% for 50% coarse PVC concrete, and water absorption decreased by 27% for 10% fine PVC concrete and 36% for the 50% fine PVC. It is not advisable to replace aggregates with PVC for achieving reference strength of 40 MPa with water to cement ratio. After studying many probabilities of using the PVC aggregates, it was decided to work on the possible maximum and minimum percentages of substitution, where it was chosen to be 10 and 50%.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)