Individanpassade hjälpmedel framtagna med additiv tillverkning

Detta är en M1-uppsats från Mälardalens universitet/Akademin för innovation, design och teknik

Författare: Albin Ylönen; Lovisa Anderssson; [2023]

Nyckelord: ;

Sammanfattning: In this project, both an existing product has been further developed and a new project has been created from scratch. These two products are designed to facilitate the daily life of wheelchair users. The existing product being improved is a previous student project of a support device that counteracts involuntary spams in the legs while being easy to use. The current supports available make it difficult to “get in and out of”, which is why this project is chosen. The product being developed from scratch is a tensioning device primarily intended for wheelchair floorball but is also suitable for other sports and applications. Current solutions are often self-built and deteriorate over time due to factors like the Velcro straps wearing out. The goal of this product is to create a tensioning device that maintains tension without deteriorating over time. The manufacturing method used for both products is additive manufacturing. The goal is for both products to be printable using the 3D printers available in the school’s facilities, and the plastic material polylactic acid (PLA) will be used. Challenges of working with additive manufacturing will be discussed, as well as the advantages and disadvantages. The strength will be tested through physical tensile testing, FEM simulations (like a digital tensile test), and manual calculations. The differences in results between there three methods will also be discussed. The research questions addressed in this work are: How can a support device be created using additive manufacturing that can withstand leg spasms and be securely attached to the wheelchair? How can a tensioning device be manufactured using additive manufacturing that can securely fasten the users in the wheelchair? The work resulted in designs that are on the right track to solving the problems but may still require further development and testing to achieve optimal results. Components manufactured with PLA using additive manufacturing are advantageous due to their relatively simple and fast production process. However, they result in slightly weaker components due to the material and its manufacturing method. Therefore, further testing and development are needed to achieve higher strength.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)