GOVERNOR ELECTRONICS FOR DIESEL ENGINES : High availability platform for real-time control and advanced fuel efficiency algorithms

Detta är en Master-uppsats från Akademin för innovation, design och teknik

Sammanfattning: Fossil fuel is a rare commodity and the combustion of this fuel results in negative environmental effects. This paper evaluates and validates the electronics needed to run intelligent algorithms to lower the fuel consumption for commercial vessels. This is done by integrating advanced fuel saving functions into an electronic device that controls the fuel injection of large diesel engines, as known as a diesel engine governor. The control system is classified as a safety critical system. This means that the electronics needs to be designed for fail safe operation. To allow for future research and development, the platform needs flexibility in respect to hardware reconfiguration and software changes, i.e. this is the basis for a system that allows for hardware-software co-design. For efficient installation and easy commissioning, the system shall allow for auto-calibration combined with programmable jumper selections to attain a cost effective solution. The computation of the fuel saving algorithm require accurate data to build a model of the vessels motions. This is achieved by integrating state of the art sensors and a multitude of communication interfaces. Among other things gyroscopes contra accelerometers where evaluated to find the best solution in respect to cost and performance. This design replace the current product DEGO III. The new product requires the same functionality and shall allow for more functions. Focus has been spent on communication, methods of accruing sensor data and more computation speed. In creating a new generation of a product there are tasks like selecting components, questions pertaining to layout of the printed circuit board and an evaluation of supply chains. The manufacturing aspects are considered to rationalize production and testing.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)