Efficient FE Modeling of Large Casted Parts

Detta är en Master-uppsats från KTH/Maskinkonstruktion

Sammanfattning: The design and analysis of large casted parts present significant challenges due to their complex geometry. Finite Element (FE) modeling is a vital tool for understanding the performance of casted components. However, the computational requirements associated with these parts often lead to excessive processing times and resource utilization. This thesis aims to enhance the efficiency of the mid-surface model creation by developing an FE modeling approach suited explicitly for large casted components. The study begins by exploring the background of casted parts and their applications. A comprehensive analysis of modeling and meshing techniques is conducted, emphasizing their application to large casted components. Building upon this knowledge, different ideas are examined, leading to the proposal of a methodology combining CAD strategies for design features, hybrid meshing techniques, and approaches aimed at reducing FE modeling time to streamline the overall process.To validate the proposed approach, a series of case studies involving casted parts with varying levels of complexity are undertaken. Real-world casting process parameters are considered, highlighting the advantages and limitations in each ideation phase. The proposed methodology is tested and show cased to expert engineers to evaluate its efficiency and feasibility. Furthermore, the efficiency of the new approach is quantitatively evaluated in terms of processing time. The developed methodology offers engineers and researchers a powerful tool to accelerate the design process and optimize FE modeling time while managing computational costs. As industries continue to push the boundaries of size and complexity in casted part design, the insights and techniques presented in this thesis offer a valuable resource for addressing the various engineering challenges inherent in future endeavors.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)