Heterogeneous MBS forwarder modeling and co-simulation

Detta är en Master-uppsats från KTH/Maskinkonstruktion (Inst.)

Sammanfattning: The forwarder acts as an important role in mechanized Cut-to-Length timber harvesting system. But the majority of forwarder products on the market are not suspended or simply suspended by bogies which limit the riding quality of forwarder and result in soil damage due to large tireground interaction force. The Forestry Research Institute of Sweden is developing an active controlled pendulum arm suspension system actuated by hydraulic cylinders on the forwarder prototype named XT28. The aim of this active suspension system is to compensate the inherent shortcomings of the current suspension solutions. The thesis project focuses on implementing a heterogeneous simulation methodology which integrates the Multi-Body System model of XT28 built in MSC ADAMS/View with active suspension control model developed in MATLAB/Simulink. Thus, the co-simulation process is visualized in ADAMS/View. The results show that the active controlled pendulum arm suspension could improve the riding quality in a large extend and reduce the force between tire and ground at the same time. The cosimulation between ADAMS and Simulink is proved as a feasible and efficient approach to study the active control system for pendulum arm suspension on XT28 forwarder.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)