Risk computation for atmospheric re-entry

Detta är en Master-uppsats från KTH/Rymdteknik

Sammanfattning: In the present work, two numerical tools are under scrutiny. Both were made to study the atmospheric re-entry of a spacecraft: DEBRISK computes the trajectory and the survivability of the spacecraft as well as its fragments, and ELECTRA calculates the trajectory of the spacecraft and its fragments, as well as the associated on-ground risk of human casualty. However, they differ in some of their functionalities and their physical models, leading to a difference in the trajectories, thus in the impact points locations for the same spacecraft. This work has multiple purposes. First, the influence of several simulation parameters are studied in both tools in order to determine a correction law for the trajectory of the spacecraft in ELECTRA, making it imitate the DEBRISK trajectory. To do so, a large dataset is built then manipulated, and a verification process is realised to quantify the accuracy of the correction law. Successive iterations of the method show a decent improvement in the ELECTRA trajectory, yet uncertainties around the correction and the low applicability of the law lead to try a new promising method based on a live data reading of the flight parameters from DEBRISK to ELECTRA. Finally, the influence of the shielding of the buildings on the human casualty risk computation, symbolised by a protection coefficient in ELECTRA is studied. Results show that considering this, protection coefficients can multiply up by five the risk of casualty. A technical documentation was written for potential future works on the same subject.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)