Energiprisstrukturens inverkan på val av energieffektiviseringsåtgärder : En analys av trender inom el- och fjärrvärmeprissättning och dess inverkan på effektiviseringsåtgärder i bostadsbeståndet

Detta är en Kandidat-uppsats från Mälardalens högskola/Akademin för ekonomi, samhälle och teknik

Sammanfattning: The purpose of this examination is to see how energy efficiency measures affect peak loads in multifamily buildings. In addition, how much of an energy share warm water has in peak loads. The Swedish building sector represents 40 % of all energy used. The thesis was restricted to multifamily buildings, which is dominated by district heating. The most common energy measures to save peak cost and reduce peak loads that are focus in this thesis work, e.g. changing windows, isolate walls and attics but also lowering indoor temperature. It was assumed in the thesis that the cost of peak loads will increase in the future and therefore the choice of energy efficiency measures is important. The calculations to determine the effectiveness of the energy measures where done by using hourly temperature data from the year 2014 in combination with, known investment costs for each energy measure. The only measures that went with profit over a 40-year period was the attics isolation and lower indoor temperature. The highest peak load savings in heating was the change of windows and wall isolation, but the investment cost was too high to gain a profit. The conclusion is that the best energy efficiency measures are attic isolation and lower indoor temperature because of its low investment cost and quick payback time, but also effective at lowering peak load by reducing the temperature difference between outdoor and indoor temperature in multifamily buildings. The analysis of warm water energy's share of the peak loads varied much between the 15 given multifamily buildings, where a base load and a peak load where compared. The result was between 10-50 % were the difference between the buildings warm water energy share off the peak loads. It where concluded that a standard value of 20 % would give much inaccuracy in determining the warm water share. It is therefore, suggested to use this method to determine the warm water share of the hourly peak load.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)