Open-Circuit-Voltage hysteresis measurement and modelling of LiFePO4 Batteries : Master Thesis Report - 2023

Detta är en Master-uppsats från KTH/Skolan för industriell teknik och management (ITM)

Sammanfattning: In a context of an expected increasing use of Lithium-ion batteries in the transportation sector, Volvo AB is developing its own solutions for large electric vehicles. It is then beneficial to reduce the costs, the energy demand and the raw materials demand by improving the battery systems’ performances. For that purpose, understanding the physical phenomena which come into play in lithium ion cells is necessary. This project’s motivation has been to deepen the existing knowledge on one or a group of these phenomena which include those at the origin of the Open Circuit Voltage (OCV) hysteresis. It is characterized by the difference in charging and discharging voltage when the cell is at a resting state. These voltage differences might result in heat losses in the cells. In this thesis, the behaviour of the Open Circuit Voltage (OCV) under different operating conditions is studied, and a Preisach empirical hysteresis model is developed. The core part of the work consisted in experimental measurements of the Open-Circuit-Voltage of 10 Ah prismatic LiFePO4 (Lithium Iron Phosphate) cells. These measurements were completed using the Galvanostatic Intermittent Titration Technique (GITT) that consists of alternative current pulse and relaxation phases. The tests were performed using relaxation times ranging from 1 hour to 48 hours with the cells being under various cycles (series of charge and discharge). The impacts of the temperature, various current rates from 0.1C to 1C (1 A to 10 A) on the OCV and the voltage relaxation were evaluated. The amplitude of the OCV hysteresis that does not vanish after full relaxation, which is defined by the difference between the OCV charge and the OCV after discharge, was found to vary between 5 mV and 20-25 mV depending on the State-of-Charge of the cells. Two peaks are identified around 20-30% and 65-70% State-of-Charge. The measured OCV hysteresis with 24 hours relaxation is about half of the measured OCV hysteresis with 2-5 hours relaxation. The experiments also measured an apparent smaller OCV hysteresis when the magnitude of the current increases; this trend is to be verified after full relaxation. The temperature has an impact on the OCV which is averaging around ±0.2 mV/K. The analysis of the voltage relaxation behaviour described that at low temperatures and low C-Rates, the cells get closer to equilibrium voltage at a slower pace. In addition, a higher test time, characterized by longer relaxation times after each step and/or a larger number of steps within the same State of Charge (SOC) range, tends to increase the time required for the cell to reach an equilibrium. After completing the OCV measurements, a Preisach hysteresis model is developed based on the experimental results. The model predicts the OCV variations of an Lithium ferrophosphate (LFP) cell at ambient temperature when going through various charge and discharge cycles. Its estimated Root Mean Square Error (RMSE) is 3 mV, but the accuracy of the model could be partially confounded with measurement uncertainty. The main outcomes are a more accurate description of the voltage relaxation behaviour and a new estimation of the amplitude of the OCV hysteresis in LFP cells.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)