The Einstein Field Equations : on semi-Riemannian manifolds, and the Schwarzschild solution

Detta är en Kandidat-uppsats från Umeå universitet/Institutionen för matematik och matematisk statistik

Sammanfattning: Semi-Riemannian manifolds is a subject popular in physics, with applications particularly to modern gravitational theory and electrodynamics. Semi-Riemannian geometry is a branch of differential geometry, similar to Riemannian geometry. In fact, Riemannian geometry is a special case of semi-Riemannian geometry where the scalar product of nonzero vectors is only allowed to be positive. This essay approaches the subject from a mathematical perspective, proving some of the main theorems of semi-Riemannian geometry such as the existence and uniqueness of the covariant derivative of Levi-Civita connection, and some properties of the curvature tensor. Finally, this essay aims to deal with the physical applications of semi-Riemannian geometry. In it, two key theorems are proven - the equivalenceof the Einstein field equations, the foundation of modern gravitational physics, and the Schwarzschild solution to the Einstein field equations. Examples of applications of these theorems are presented.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)