Multi-site Organ Detection in CT Images using Deep Learning

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: When optimizing a controlled dose in radiotherapy, high resolution spatial information about healthy organs in close proximity to the malignant cells are necessary in order to mitigate dispersion into these organs-at-risk. This information can be provided by deep volumetric segmentation networks, such as 3D U-Net. However, due to limitations of memory in modern graphical processing units, it is not feasible to train a volumetric segmentation network on full image volumes and subsampling the volume gives a too coarse segmentation. An alternative is to sample a region of interest from the image volume and train an organ-specific network. This approach requires knowledge of which region in the image volume that should be sampled and can be provided by a 3D object detection network. Typically the detection network will also be region specific, although a larger region such as the thorax region, and requires human assistance in choosing the appropriate network for a certain region in the body.  Instead, we propose a multi-site object detection network based onYOLOv3 trained on 43 different organs, which may operate on arbitrary chosen axial patches in the body. Our model identifies the organs present (whole or truncated) in the image volume and may automatically sample a region from the input and feed to the appropriate volumetric segmentation network. We train our model on four small (as low as 20 images) site-specific datasets in a weakly-supervised manner in order to handle the partially unlabeled nature of site-specific datasets. Our model is able to generate organ-specific regions of interests that enclose 92% of the organs present in the test set.  

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)