Effect of dwell (hold) time on high temperature fatigue crack growth of AM components

Detta är en Master-uppsats från KTH/Lättkonstruktioner, marina system, flyg- och rymdteknik, rörelsemekanik

Sammanfattning: GKN Aerospace AB, Sweden (GAS) is one of the leading companies taking up the charge in manufacturing components using Additive Manufacturing(ed) (AM) techniques in the aerospace sector. They are a hub of engineering and they are a supplier of engine and engine components to the world’s leading aero-engine manufacturers, and airframes to civil and military aircraft manufacturers. A phenomenon that is of interest to designers at GAS is the effects of dwell times on high temperature fatigue, especially how this phenomenon affects the fatigue properties of Laser Powder Bed Fusion (LPBF) Inconel 718 (IN718). IN718 is a versatile alloy that can be used at relatively high temperatures and has excellent weldability and is one of the newer materials replacing expensive materials such as Titanium (and its alloys) in the aerospace industry. The aerospace industry has been pushing for an increase in parts manufactured using AM processes because of the advantage the AM process grants to the production process, however a new manufacturing process for an industry needs to be studied and researched from a failure perspective, i.e. the prominent mode of failure for components manufactured using AM and the underlying factors influencing the failure mechanism must be studied. This thesis explores a solution to predict the life of components based on experimental crack propagation tests wherein the test specimens were subjected to the phenomenon mentioned above. A literature survey was conducted researching ways to model this phenomenon and the factors affecting it. The methods found in the literature survey were far too complex to model for the purposes of this thesis, additionally the methods described in the literature were empirical methods describing the phenomenon, rather than a fundamental study of factors causing the phenomenon and ways to model their influence on the life of the component. Hence, a simple method based on the Palmgren-Miner linear damage summation rule which was coded in the form of a FORTRAN code was utilized to compute the life of the components. Software runs predicting life of physical experiments were conducted and inferences about the predictive method were drawn. The limitations of this method were understood and possible solutions were explored, based on which conclusions were drawn regarding the method’s efficacy in predicting the life of the specimens that underwent dwell loading during fatigue cycling. Finally, the method was applied to a case study to understand the effectiveness of the method.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)