Efficient seakeeping performance predictions with CFD

Detta är en Master-uppsats från KTH/Marina system

Sammanfattning: With steadily increasing computational power, computational fluid dynamics (CFD) can be applied to unsteady problems such as seakeeping simulations. Therefore, a good balance between accuracy and computational speed is required. This thesis investigates the application of CFD to seakeeping performance predictions and aims to propose a best-practice procedure for efficient seakeeping simulations. The widely used KVLCC2 research vessel serves as a test case for this thesis and FINEŠ/Marine software package is used for CFD computations. In order to validate the simulations, results are compared to recent experimental data from SSPA as well as predictions with potential ˛ow code SHIPFLOW® Motions. As for the calm water simulations, both inviscid and viscous ˛ow computations are performed in combination with three mesh refinement levels. Seakeeping simulations with regular head waves of different wavelengths are set-up correspondingly. Furthermore, different strategies for time discretization are investigated. With the given computational resources, it is not feasible to complete seakeeping simulations with a ˝ne mesh. However, already the coarse meshes give good agreement to experiments and SHIPFLOW® Motions' predictions. Viscous ˛ow simulations turn out to be more robust than Euler ˛ow computations and thus should be preferred. Regarding the time discretization, a fixed time discretization of 150 steps per wave period has shown the best balance between accuracy and speed. Based on these findings, a best-practice procedure for seakeeping performance predictions in FINEŠ/Marine is established. Taking the most efficient settings obtained from head wave simulations, the vessel is subjected to oblique waves with 160° encounter angle. Under similar wave conditions, CFD predictions of a similar thesis show close agreement in terms of added wave resistance. Compared to the previous head wave conditions of this study, added resistance in 160° oblique waves is found to be significantly higher. This underlines that oblique bow quartering waves represent a relevant case for determining the maximum required power of a ship. CFD and potential ˛ow show similar accuracy with respect to ship motions and added wave resistance, albeit potential ˛ow outperforms CFD in terms of computational speed. Hence, CFD should be applied in cases where viscous effects are known to have large influence on a vessel's seakeeping behavior. This can be the case if motion control and damping devices are to be evaluated, for instance.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)