Predictable Multiprocessor Platform for Safety- Critical Real- Time Systems

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Multicore systems excel at providing concurrent execution of applications, giving true parallelism where all cores can execute sequences of machine instructions at the same time. However, multicore systems come with their own sets of problems, most notably when cores in a system (or core tiles) share hardware components such as memory modules or Input/Output (IO) peripherals. This increased level of complexity makes it especially difficult to design and verify safety- critical systems that require real- time operation, such as flight controllers in airplanes and airbag controllers in the automotive industry. Verifying that that systems are predictable is therefore essential, requiring methods for measuring and finding out the Worst- Case Execution Times (WCETs) and Best- Case Execution Times (BCETs). Additionally, the designer must ensure isolation between running applications (indicating that the platform is composable). This thesis work consists of designing a predictable Multiprocessor System On- Chip (MPSoC) using Qsys and Quartus II, as well as providing methods and test benches that can support all claims made about the platform’s reported behavior. A shared- memory loosely coupled multicore design was implemented, which can be horizontally scaled from 2 to 8 core tiles. A high- level Hardware Abstraction Layer (HAL) is written for the platform to simplify its use. Using Nios II/e processors as the logical cores in the platform’s core tiles gives predictable (mostly static) latencies when the platform is tested, showing no erratic or unexplained timing variations. However, due to the Round Robin (RR) nature of the arbitration logic in the Avalon Switch Fabric (ASF), composability was not fully achieved in the platform. Groundwork for implementing Time- Division Multiplexing (TDM) arbitration logic is proposed and will ideally be fully implemented in future work. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)