Integration of green hydrogen in the European energy systems : technical maturity and impact assessment of hydrogen utilisation in 2020

Detta är en Uppsats för yrkesexamina på avancerad nivå från SLU/Dept. of Energy and Technology

Sammanfattning: Hydrogen has been suggested as a way to decarbonise the global energy system for decades but has yet to have a breakthrough on the European energy market. For the past decade, the efforts to reduce carbon emissions in the European energy market have increased, leading to rapid changes and a decline in costs of renewable energy. These efforts to reduce carbon emissions, combined with difficulties of decarbonising in several sectors due to few viable alternatives, surged the interest in hydrogen as a possible solution. This thesis investigates how large scale production of hydrogen via electrolysers can be integrated into a future power system with high shares of renewable energy capacity. Based on a literature review, a scenario for the year 2050 was constructed with the aim to identify sectors with potential hydrogen demand in the future. The scenario focuses on Germany and the United Kingdom and was implemented in a power market dispatch model called Bid3 to analyse its effects on the European energy system. The hydrogen demand was estimated to 225 TWh for Germany and 157 TWh for the United Kingdom whereas the necessary storage capacity for the two countries was identified to between 20 to 24 TWh. The sectors with the largest hydrogen potential were identified as the residential and commercial heating sector as well as the heavy vehicle transportation sector. Moreover, the implementation of hydrogen managed to reduce greenhouse gas emissions by 88.8 M tonnes CO2-eq per year. The implemented electrolysers showed great synergy with renewable energy capacity by improving the flexibility of the power system. As a result, it also reduced the severity of price crashes due to oversupply of renewable energy generation. However, even with installed electrolysers, the high share of renewable energy capacity caused several hours of wholesale power price close to zero. Hence, the scenario highlighted the difficulties of obtaining a power system with a high share of renewable capacity within the regulations of the current power market.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)