Estimating fuel consumption using regression and machine learning

Detta är en Master-uppsats från KTH/Optimeringslära och systemteori

Författare: Lukas Ekström; [2018]

Nyckelord: ;

Sammanfattning: This thesis focuses on investigating the usage of statistical models for estimating fuel consumption of heavy duty vehicles. Several statistical models are assessed, along with machine learning using artificial neural networks. Data recorded by sensors on board trucks in the EU describe the operational usage of the vehicle. The usage of this data for estimating the fuel consumption is assessed, and several variables originating from the operational data is modelled and tested as possible input parameters. The estimation model for real world fuel consumption uses 8 parameters describing the operational usage of the vehicles, and 8 parameters describing the vehicles themselves. The operational parameters describe the average speed, topography, variation of speed, idling, and more. This model has an average relative error of 5.75%, with a prediction error less than 11.14% for 95% of all tested vehicles. When only vehicle parameters are considered, it is possible to make predictions with an average relative error of 9.30%, with a prediction error less than 19.50% for 95% of all tested vehicles. Furthermore, a computer software called Vehicle Energy Consumption Calculation tool(VECTO) must be used to simulate the fuel consumption for all heavy duty vehicles, according to legislation by the EU. Running VECTO is a slow process, and this thesis also investigates how well statistical models can be used to quickly estimate the VECTO fuel consumption. The model estimates VECTO fuel consumption with an average relative error of 0.32%and with a prediction error less than 0.65% for 95% of all tested vehicles

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)