Vibration reduction over junctions in buildings

Detta är en Master-uppsats från KTH/Marcus Wallenberg Laboratoriet MWL

Sammanfattning: Structure borne sound can travel multiple paths from one office to another and choosing to sound insulate a specific building element can be difficult since all the building elements are connected together and form a coupled system. The current approach by engineers when investigating transmission paths between spaces in a building is using a computer model and assuming that the junctions are firmly clamped or free. Standardized measuring methods includes a large amount of measuring points on each side of a junction and excitation over large areas. This study intends to investigate if it is possible to gain valuable information with a small amount of measuring points in a field measurement by comparing the data with an analytical model and a finite element model. The field measurement consisted of excitation from an impulse hammer from two excitation points and three accelerometers placed on each side of the junctions and on both sides of the separating wall. The measurement took place in a office building, with no information about the structure other than length, width and thickness of the elements.The reduction over the junctions varied with frequency and no general conclusion could be made about the transmission paths. The results showed high vibration reduction over the junction in low frequencies which then decreased in higher frequencies. Measurement results in low frequencies coincided with the analytical model, that vibration reduction is high over a junction for lighter separating walls in low frequencies and decrease quickly as frequency increases. Different results over each junction was obtained depending on excitation point, which indicates that there is flanking transmission along with the fact that it is a complex coupled system.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)