Formalise Defense Strategies in Design Patterns of Threat Models

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Cyber-attacks are an increasing problem for organizations across the world. The attacks on systems are getting more and more sophisticated and thereby more and more difficult to protect against. The security of systems is crucial to protect your data from unauthorized access. One approach for testing the resilience of these systems is the use of threat modelling and attack simulations. The use of threat models also enables you to identify vulnerabilities in your infrastructure. The overall resilience of the system can then be increased by implementing protection against these vulnerabilities which can take many forms. There can be security issues regarding a single component in the infrastructure and more structural issues concerning more than one component in the system. Meta Attack Language (MAL) is a meta language to write threat languages of different systems. In MAL there exits different components called assets, these assets can have defenses. The problem is that structural weaknesses cannot be identified in the current state of the language. This thesis work will provide a solution to identify vulnerable patterns in a threat model and translate these pattern to secure patterns. A prototype has been created that take a threat model as input and outputs a new updated threat model. The prototype will translate the input to a graph database and run a series of predefined queries on the database that will identify and replace vulnerable patterns. A formal logic for finding vulnerable patterns is suggested and an API to change these patterns is implemented. The result shows that by running a model through the prototype, structural vulnerabilities can be identified and mitigated. This could potentially increase the overall resilience of the system. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)