Estimating Poolability of Transport Demand Using Shipment Encoding : Designing and building a tool that estimates different poolability types of shipment groups using dimensionality reduction.

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: Dedicating less transport resources by grouping goods to be shipped together, or pooling as we name it, has a very crucial role in saving costs in transport networks. Nonetheless, it is not so easy to estimate pooling among different groups of shipments or understand why these groups are poolable. The typical solution would be to consider all shipments of both groups as one and use some Vehicle Routing Problem (VRP) software to estimate costs of the new combined group. However, this brings with it some drawbacks, such as high computational costs and no pooling explainability. On this work we build a tool that estimates the different types of pooling using demand data. This solution includes mapping shipment data to a lower dimension, where each poolability trait corresponds to a latent dimension. We tested different dimensionality reduction techniques and found that the best performing are the autoencoder models based on neural networks. Nevertheless, comparing shipments on the latent space turns out to be more challenging than expected, because distances in these latent dimensions are sometimes uncorrelated to the distances in the real shipment features. Although this limits the use cases of this approach, we still manage to build the full poolability tool that incorporates the autoencoders and uses metrics we designed to measure each poolability trait. This tool is then compared to a VRP software and proves to have close accuracy, while being much faster and explainable.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)