Money Laundering Detection using Tree Boosting and Graph Learning Algorithms

Detta är en Master-uppsats från KTH/Matematisk statistik

Sammanfattning: In this masters thesis we focused on using machine learning methods for detecting money laundering in financial transaction networks, in order to demonstrate that it can be used as a complement or instead of the more commonly used rule based systems. The graph learning method graph convolutional networks (GCN) has been a hot topic in the field since they were shown to scale well with data size back in 2018. However the typical GCN models cannot use edge features, which is why this thesis combines the GCN model with a node and edge neural network (NENN) in order to solve this problem. This new method will be compared towards an already established machine learning method for financial transactions, namely the tree boosting method (XGBoost). Because of confidentiality concerns for financial transactions data, the machine learning algorithms will be tested on two carefully constructed synthetically generated data sets, which from agent based simulations resembles real financial data. The results showed the viability and superiority of the new implementation of the GCN model with it being a preferable method for connectivly structured data, meaning that a transaction or account is analyzed in the context of its financial environment. On the other hand the XGBoost method showed better results when examining transactions independently. Hence it was more accurately able to find fraudulent and non fraudulent patterns from the transactional features themselves.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)