A hybrid low - temperature heating system in geothermal retrofitting for public buildings in the Mediterranean climate

Detta är en Master-uppsats från KTH/Hållbar utveckling, miljövetenskap och teknik

Sammanfattning: More than 50 % of EU’s yearly energy demand is spent on heating and cooling systems with which most of its source is generated from non-renewable fossil fuel [1]. Furthermore, half of the EU buildings are heated with a non-efficient boiler of about 60% or less efficiency [1]. The report released by EU from 1990 to 2007 revealed that fuel combustion and fugitive emission contribute to about 79.3% of total greenhouse gas emissions in CO2 equivalents [1]. The EU-EBPD long-term renovation strategy is to improve the energy performance of all residential and non-residential buildings in its member countries through supporting the renovation of the existing buildings into highly energy efficient and decarbonised buildings [2]. Despite all these EU policies and efforts to replace these non-efficient heating systems, the main challenge is price comparison of different solutions and their efficiency in retrofitting of the heating old systems together with the lack of information about the functioning of those old systems [1]. Thus, the development of an easy to install heating system in retrofitting with low exergy heat supply is a significant contribution to a sustainable solution in minimizing energy resources depletion and environmental emission. Furthermore, efficient system control of these easy to install heating systems, hybrids combinations solution for retrofitting building could be a sustainable solution for the preservation of the existing building. The main objective of this work was to design an easy to install hybrid low-temperature floor heating system in retrofitting buildings and compare its results on energy performance, thermal comfort and indoor air quality with other conventional heating mainly used in the Mediterranean climate. This study was performed in two existing radiators heated buildings located in Sant Cugat del vallès in Catalonia, Spain.The results showed that the hybrid low-temperature heating system has the highest energy performance and energy saving of 48 % and 52% compared to that of existing radiator heating and all air heating, respectively. However, hybrid low-temperature floor heating showed a slow heating response, and consequently, it showed lower operative temperature compared to others even though it was within the recommended standards limits. The hybrid low-temperature heating system with demand-controlled ventilation also showed a better indoor air quality, while as existing radiator with its natural ventilation showed the worst indoor air quality. All three compared heating systems showed a better coefficient of performance with low-temperature heat supply and were able to operate with low-temperature heat supply.  

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)