Spatial Modeling of Wildlife Crossing:GIS-based Approach for Identifying High-priority Locations of Defragmentation across Transport Corridors

Detta är en Kandidat-uppsats från KTH/Geoinformatik

Sammanfattning: In this report, connectivity modeling has been performed using land cover data to find habitat pinch-points for deer along the study area Norrortsleden in Stockholm. Norrortsleden was chosen because there are a high number of deer accidents in the area, and is a priority area for action according to a barrier analysis for deer made by the Swedish Transport Administration. After interviews and research, it was found that a tool named LinkageMapper using CircuitScape theory is one good way to find habitat pinch-points along transport corridors. Firstly, a habitat resistance raster map and zone data are needed. The habitat resistance layer was made using ground cover data and given resistance values specifically for deer. An edge-zone layer was also added on top using built-in ArcGIS tools. Lastly all the road and railway data was transformed into raster and added to the final resistance layer. To find the pinch-points in the natural habitat for deer, different settings for the ArcGIS tool LinkageMapper have been tested and variations of the zone layer have been used. LinkageMapper is an external free to download tool and uses CircuitScape theory to find habitat pinch points. Different settings were tested for a 2-zone version on a 2 km buffer on each side of the road. In addition, two main settings are available, all-to-one mode and pairwise mode in LinkageMapper. Input width must also be entered to limit the number of results. Corridor width was set to 50 m for all of the produced results. After preparation of the raw data, processing zones and resistance layers it was found that usually only one corridor was showing, so a version with 6 zones on each side of the road with a 4 km buffer was made and produced more continuous results. All of the pinch-points found were marked on a map and the ones not already near an existing wildlife passage are located just south of Lake Vallentuna. The research found that the GIS-based approach is effective for Identifying high-priority locations of defragmentation across transport corridors. Using CircuitScape theory can be a great compliment too regular least cost-path. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)