Den vertikala trädgårdens utveckling : En design research studie för framtagning av ett teoretiskt väggsnitt bestående av en halvsandwich med en infäst levande fasad

Detta är en Kandidat-uppsats från Jönköping University

Sammanfattning: Introduction: There is a housing shortage in Sweden and the green space factor must be taken into account when building. The green space factor includes living façades that have a positive effect on people and society. The company Butong, in which the work has been done in collaboration, has patented solutions within living façades. The company currently mounts the façade solutions on a prefabricated concrete sandwich wall, but lacks a solution for mounting on a half sandwich wall. The purpose of a solution with a half sandwich wall was to avoid unnecessary material consumption, reduce environmental impact, and reduce the thickness of the wall. The work examined a half sandwich wall with three insulation materials: cellular plastic, PIR and Kooltherm. Method: The chosen method for the study was design research methodology, which contains a total of seven steps. The first two steps were used in this study. The first step consisted of a literature study. The second step was supplemented with empirical data in form of interviews and further literature studies. Calculations for carbon dioxide equivalents were performed by calculating the footprint of each material. The calculations were based on the material thickness of 1 m2 wall area. Data were obtained from environmental product declarations for construction products (EPDs) based on factors A1-A3.   Results and Analysis: For all half sandwich walls, a roofboard in stone wool was chosen as the utmost layer. This was based on conditions for fire safety for the materials cellular plastic and PIR, and based on attachment for the material Kooltherm. The use of a polypropylene plastic mat to obtain an air gap was decided for all materials based on moisture safety. Furthermore, the results showed three possible fastening methods for mounting Butong's façade solution on a half-sandwich walls: cast plastic profiles (SFS-profiles), vertically cast L-profiles and horizontally cast L-profiles. The result also reported that replacing a full sandwich wall with a half sandwich wall reduces material consumption, and reduces emissions of carbon dioxide equivalents by up to 31%. This is based on the EPD factors A1-A3 where a comparison of the half sandwich wall was made with a full sandwich wall.  Discussion: The thickness of the walls could be reduced by 60-80 mm when a full sandwich wall was replaced with a half sandwich wall. The variation depended on insulation material. The insulation material Kooltherm resulted in the thinnest wall. The material PIR varied in fire classification. The reason was discussed to be the difference in supply of products in different countries. The choice of attachment method was reported to be dependent on the situation. Cellulose showed the lowest emissions of carbon dioxide equivalents. Both with regard to the production phase, and with regard to the percentage reduction when comparing full sandwich walls and half sandwich walls. In conclusion, the choice of insulation material depends on individual preferences. Cellular plastic should be used when prioritizing at least emissions of carbon dioxide equivalents. Kooltherm is suitable when prioritizing the degree of utilization, considering that the wall is thinnest.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)