Deep learning, LSTM and Representation Learning in Empirical Asset Pricing

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: In recent years, machine learning models have gained traction in the field of empirical asset pricing for their risk premium prediction performance. In this thesis, we build upon the work of [1] by first evaluating models similar to their best performing model in a similar fashion, by using the same dataset and measures, and then expanding upon that. We explore the impact of different feature extraction techniques, ranging from simply removing added complex- ity to representation learning techniques such as incremental PCA and autoen- coders. Furthermore, we also introduce recurrent connections with LSTM and combine them with the earlier mentioned representation learning techniques. We significantly outperform [1] in terms of monthly out-of-sample R2, reach- ing a score of over 3%, by using a condensed version of the dataset, without interaction terms and dummy variables, with a feedforward neural network. However, across the board, all of our models fall short in terms of Sharpe ratio. Even though we find that LSTM works better than the benchmark, it does not outperform the feedforward network using the condensed dataset. We reason that this is because the features already contain a lot of temporal information, such as recent price trends. Overall, the autoencoder based models perform poorly. While the linear incremental PCA based models perform better than the nonlinear autoencoder based ones, they still perform worse than the bench- mark.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)