Metal-Organic Frameworks for Carbon Dioxide Capture : Using Sustainable Synthesis Routes

Detta är en Master-uppsats från Uppsala universitet/Institutionen för materialvetenskap

Sammanfattning: Globally the combustion of fossil fuels has increased to a greater extent. Carbon dioxide (CO2) a major greenhouse gas isa by-product of such combustion practices. Increase in the quantity of CO2 emissions has resulted in serious environmental issues including global warming, ocean acidification, extreme weather, and much more leaving a direct impact on the human society. To reduce these emissions, we need a more efficient carbon dioxide capturing technology. Using advances in materials science and engineering we can develop newer technologies for the capture of carbon dioxide gas. Metal-organic frameworks (MOFs) constitute a class of three-dimensional porous materials. They have shown applicability in various fields including carbon dioxide capture. A vast variety of MOFs can be synthesized by selecting proper metal salts and organic-linkers to build up the MOF structure. This thesis focuses on the synthesis of MOFs through a sustainable process or green synthesis route. Most of the MOFs in this study have been synthesized at ambient temperature and pressure conditions with deionized water as the primary solvent. A total of eight MOFs were synthesized in this study using two organic-linkers namely, 1,2,4,5-tetrakis(4-carboxyphenyl)-benzene (H4TCPB) and 2,5-dihydroxy-1,4-benzoquinone (H2DHBQ). The metal-salts used were based on hafnium, zirconium, cerium, magnesium, iron and manganese. A number of qualitative and quantitative tests were carried out onthe MOF samples to ensure their quality of produce and performance. The primary focus was to test the materials for their capacity to uptake carbon dioxide (CO2) in a mixture of flue gases. The highest CO2 uptake capacity was recorded to be 3.02 mmol/g (at 293 K and 1 bar) by the H2DHBQ-magnesium based MOF. All the materials showed good results andwere proven to be reusable. All the synthesized MOFs were crystalline in nature, showed a single-phase microstructure and high surface area values. A supplementary study was conducted wherein the powdered MOFs were 3D printed by the Direct Ink Writing (DIW) technique using an alginate binder. The study was satisfactory because the MOFs after being 3D printed, managed to preserve their inherent properties and characteristics. The results were in par with that of their pristine MOF counterparts. 

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)