Alternativ Splicing som biomarkör vid systemisk lupus erythematosus

Detta är en Kandidat-uppsats från Linnéuniversitetet/Institutionen för kemi och biomedicin (KOB)

Sammanfattning: Characteristics as unknown cause, complicated pathophysiology and a great amount of complexity are describing systemic lupus erythematosus (SLE) more than well. It’s an autoimmune disease that is almost exclusive for women in their reproductive years and are believed to correlate with both genetics and environmental factors. Risk factors like stress, usage of cigarettes or birth controls with estrogen and infections are believed to trigger the progression of SLE. The spectra of therapeutic drugs are narrow due to the complexity and requirement of financial resources for scientific causes. Treatment is mainly symptomatic. The alternative splicing (AS) is a highly complex mechanism that is essential and are able to generate a great diversity of proteins encoded by the same gene are referred to as isoforms. Splicing occurs after the transcription that generates pre-mRNA because the exons need to fuse together and excision of introns. In patients with cancer diagnosis, they have observed that progression of disease and AS are correlated by the means of isoforms and splicing regulators. In studies, the relevance of alternative splicing events in SLE has been shown for both splicing regulators like SRSF1 and different isoforms for example CD44 and CD45. The aim of this study was to evaluate the potential biomarker AS in SLE.  This study of literature started with looking for clinical trials within databases like PubMed and Web of Science, that matched the aim of the study. Usage of terms like ‘SLE and biomarker’ och ‘SLE and alternative splicing’ etcetera. After inclusion of six scientific articles the author started the work with this literature of study.  Results gave strong indications that usage of alternative splicing as biomarker do have strong potential. Although the need of more goal-oriented scientific studies is required. Results from all six studies can be summarized by the line of argument that AS, in different ways, are somehow involved in the pathogenesis and progression of SLE. Both spliceosome, isoforms, splicing factors, other proteins and is also a possible, in the future, therapeutic target for example monoclonal antibodies. Other therapeutic targets maybe against phosphatases and kinases. New strategies are going to bring hope for the patients that are suffering from SLE, especially when the disease is active for 2–3 years. Being able to individualize treatment are going to generate a better quality of life for many SLE patients and usage of AS as a biomarker for disease severity.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)