Access Point Selection and Clustering Methods with Minimal Switching for Green Cell-Free Massive MIMO Networks

Detta är en Master-uppsats från KTH/Skolan för elektroteknik och datavetenskap (EECS)

Sammanfattning: As a novel beyond fifth-generation (5G) concept, cell-free massive MIMO (multiple-input multiple-output) recently has become a promising physical-layer technology where an enormous number of distributed access points (APs), coordinated by a central processing unit (CPU), cooperate to coherently serve a large number of user equipments (UEs) in the same time/frequency resource. However, denser AP deployment in cell-free networks as well as an exponentially growing number of mobile UEs lead to higher power consumption. What is more, similar to conventional cellular networks, cell-free massive MIMO networks are dimensioned to provide the required quality of service (QoS) to the UEs under heavy traffic load conditions, and thus they might be underutilized during low traffic load periods, leading to inefficient use of both spectral and energy resources. Aiming at the implementation of energy-efficient cell-free networks, several approaches have been proposed in the literature, which consider different AP switch ON/OFF (ASO) strategies for power minimization. Different from prior works, this thesis focuses on additional factors other than ASO that have an adverse effect not only on total power consumption but also on implementation complexity and operation cost. For instance, too frequent ON/OFF switching in an AP can lead to tapering off the potential power saving of ASO by incurring extra power consumption due to excessive switching. Indeed, frequent switching of APs might also result in thermal fatigue and serious lifetime degeneration. Moreover, time variations in the AP-UE association in favor of energy saving in a dynamic network bring additional signaling and implementation complexity. Thus, in the first part of the thesis, we propose a multi-objective optimization problem that aims to minimize the total power consumption together with AP switching and AP-UE association variations in comparison to the state of the network in the previous state. The proposed problem is cast in mixed integer quadratic programming form and solved optimally. Our simulation results show that by limiting AP switching (node switching) and AP-UE association reformation switching (link switching), the total power consumption from APs only slightly increases but the number of average switching drops significantly regardless of node switching or link switching. It achieves a good balance on the trade-off between radio power consumption and the side effects excessive switching will bring. In the second part of the thesis, we consider a larger cell-free massive MIMO network by dividing the total area into disjoint network-centric clusters, where the APs in each cluster are connected to a separate CPU. In each cluster, cell-free joint transmission is locally implemented to achieve a scalable network implementation. Motivated by the outcomes of the first part, we reshape our dynamic network simulator to keep the active APs for a given spatial traffic pattern the same as long as the mean arrival rates of the UEs are constant. Moreover, the initially formed AP-UE association for a particular UE is not allowed to change. In that way, we make the number of node and link switching zero throughout the considered time interval. For this dynamic network, we propose a deep reinforcement learning (DRL) framework that learns the policy of maximizing long-term energy efficiency (EE) for a given spatially-varying traffic density. The active AP density of each network-centric cluster and the boundaries of the clusters are learned by the trained agent to maximize the EE. The DRL algorithm is shown to learn a non-trivial joint cluster geometry and AP density with at least 7% improvement in terms of EE compared to the heuristically-developed benchmarks.

  HÄR KAN DU HÄMTA UPPSATSEN I FULLTEXT. (följ länken till nästa sida)